Euclidean minimum spanning trees and bichromatic closest pairs Conference Paper


Author(s): Agarwal, Pankaj K; Edelsbrunner, Herbert; Schwarzkopf, Otfried ; Welzl, Emo
Title: Euclidean minimum spanning trees and bichromatic closest pairs
Affiliation
Abstract: We present an algorithm to compute a Euclidean minimum spanning tree of a given set S of n points in Ed in time O(Td(N, N) logd N), where Td(n, m) is the time required to compute a bichromatic closest pair among n red and m blue points in Ed. If Td(N, N) = Ω(N1+ε), for some fixed ε > 0, then the running time improves to O(Td(N, N)). Furthermore, we describe a randomized algorithm to compute a bichromatic closets pair in expected time O((nm log n log m)2/3+m log2 n + n log2 m) in E3, which yields an O(N4/3log4/3 N) expected time algorithm for computing a Euclidean minimum spanning tree of N points in E3.
Conference Title: SCG: Symposium on Computational Geometry
Publisher: ACM  
Date Published: 1990-01-01
Start Page: 203
End Page: 210
DOI: 10.1145/98524.98567
Open access: no
IST Austria Authors
Related IST Austria Work