Mean-payoff automaton expressions Conference Paper

Author(s): Chatterjee, Krishnendu; Doyen, Laurent; Edelsbrunner, Herbert; Henzinger, Thomas A; Rannou, Philippe
Title: Mean-payoff automaton expressions
Title Series: LNCS
Affiliation IST Austria
Abstract: Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic meanpayoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions.
Conference Title: CONCUR: Concurrency Theory
Volume: 6269
Conference Dates: August 31 - September 3, 2010
Conference Location: Paris, France
ISBN: 978-3-95977-017-0
Publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik  
Location: Berlin, Heidelberg
Date Published: 2010-11-18
Start Page: 269
End Page: 283
Sponsor: This research was supported by EPFL, IST Austria, LSV@ENS Cachan & CNRS, and the following grants: the European Union project COMBEST, the European Network of Excellence ArtistDesign, the DARPA grant HR0011-05-1-0057, and the NSF grant DBI-0820624.
DOI: 10.1007/978-3-642-15375-4_19
Open access: yes (repository)
IST Austria Authors
  1. Thomas A. Henzinger
    415 Henzinger
Related IST Austria Work