Minimizing nonsubmodular functions with graph cuts - A review Journal Article

Author(s): Kolmogorov, Vladimir; Rother, Carsten
Article Title: Minimizing nonsubmodular functions with graph cuts - A review
Abstract: Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there is an accepted view within the computer vision community that graph cuts can only be used for optimizing a limited class of MRF energies (e.g., submodular functions). In this survey, we review some results that show that graph cuts can be applied to a much larger class of energy functions (in particular, nonsubmodular functions). While these results are well-known in the optimization community, to our knowledge they were not used in the context of computer vision and MRF optimization. We demonstrate the relevance of these results to vision on the problem of binary texture restoration.
Keywords: Energy minimization; Markov Random Fields; Min cut/max flow; Quadratic pseudo-Boolean optimization; Texture restoration
Journal Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
Volume: 29
Issue 7
ISSN: 0162-8828
Publisher: IEEE  
Date Published: 2007-07-01
Start Page: 1274
End Page: 1279
DOI: 10.1109/TPAMI.2007.1031
Open access: no
IST Austria Authors
Related IST Austria Work