Estimating barriers to gene flow from distorted isolation-by-distance patterns Journal Article


Author(s): Ringbauer, Harald; Kolesnikov, Alexander; Field, David; Barton, Nicholas H
Article Title: Estimating barriers to gene flow from distorted isolation-by-distance patterns
Affiliation IST Austria
Abstract: In continuous populations with local migration, nearby pairs of individuals have on average more similar genotypes than geographically well separated pairs. A barrier to gene flow distorts this classical pattern of isolation by distance. Genetic similarity is decreased for sample pairs on different sides of the barrier and increased for pairs on the same side near the barrier. Here, we introduce an inference scheme that utilizes this signal to detect and estimate the strength of a linear barrier to gene flow in two-dimensions. We use a diffusion approximation to model the effects of a barrier on the geographical spread of ancestry backwards in time. This approach allows us to calculate the chance of recent coalescence and probability of identity by descent. We introduce an inference scheme that fits these theoretical results to the geographical covariance structure of bialleleic genetic markers. It can estimate the strength of the barrier as well as several demographic parameters. We investigate the power of our inference scheme to detect barriers by applying it to a wide range of simulated data. We also showcase an example application to a Antirrhinum majus (snapdragon) flower color hybrid zone, where we do not detect any signal of a strong genome wide barrier to gene flow
Keywords: isolation by distance; identity by descent; Demographic Inference; Barriers to Gene Flow
Journal Title: Genetics
Volume: 2087
Issue 3
ISSN: 0016-6731
Publisher: Genetics Society of America  
Date Published: 2018-03-01
Start Page: 1238
End Page: 1245
URL:
DOI: 10.1534/genetics.117.300638
Open access: yes (repository)
IST Austria Authors
  1. Nick Barton
    252 Barton
Related IST Austria Work